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Locally Equilibrium Diffusion Processes. II. 
Generalized Stochastic Mechanics and Plastic Yielding 

Andrzej Trzfsowski I 
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The locally equilibrium diffusion process is considered in which two mean 
velocities of the diffusing particles appear: the mean arrival velocity to the point 
and the mean starting velocity from the point. It is shown that such a diffusion 
process can be described by generalized Nelson stochastic mechanics. Equations 
describing the coupling of the diffusion process with the plastic yielding process 
are formulated. It is shown that the increments of the plastic strains caused by 
the dislocation motion can be described by a Weyl gauge field. 

1. I N T R O D U C T I O N  

Diffusion theories usually ignore the possibility that  the mean  arrival 
velocity o f  the diffusing particle to a point  may differ f rom the mean  starting 
velocity o f  the particle f rom the point. In  fact, in these theories only the 
mean  starting velocity is taken into account  (Trzesowski, 1989). The formula-  
t ion o f  the diffusion descript ion on the basis o f  the Markovian diffusion 
processes theory  shows that (in the case o f  constant  diffusion coefficients) 
the mean  starting velocity field b is connected with the mean  arriving velocity 
field b ,  in the following way (Trzcsowski, 1989): 

b = b , - 2 u  (1) 

where u is the diffusion velocity field (Section 2), vanishing only when the 
distribution o f  the diffusing matter is homogeneous .  The distinction of  the 
mean  starting velocity in the classical diffusion theory is connected with 
basing this theory on the so-called Stokes relation: 

F~xt = ~b (2) 
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where Fex t is the force with which the external field acts on the diffusing 
particle and ~" is the friction coefficient describing (together with the diffusion 
coefficients) the interaction of  the medium on the diffusing particles. Basing 
this on the Stokes relation means that the classical diffusion theory is adapted 
to the description of diffusion processes for which the stationary distribu- 
tions of the diffusing matter appear only in the thermodynamic equilibrium 
state of a body with diffusion (Trzesowski, 1989). 

So, if we do not treat any of the mean (starting or arriving) velocities 
as physically distinguished, and if we want to obtain the possibility of 
description of the stationary nonequilibrium distributions of  the diffusing 
matter, we have to give up the Stokes relation. Trz~sowski and Kotowski 
(1985) proposed, in the case of constant diffusion coefficients, to replace 
that relation by the so-called Nelson relation (Nelson, 1967) of the form 

m a = K  (3) 

where a is the appropriately defined mean acceleration of the Markovian 
diffusion process, m is the diffusing particle mass, and K is the force acting 
on that particle. If one additionally takes that the force K is of  the form 

K = Fext- ~b (4) 

and takes into account that ~" = rn/~ has the sense of the so-called kinetic 
relaxation time in statistical physics, and that in the limit ~-~ 0 (~" = const), 
(3) and (4) reduce to (2), then the classical diffusion theory becomes the 
limiting case of  a more general theory, valid for arbitrary relaxation times 
~" (Trzesowski and Kotowski, 1985). If  b and Fex t a r e  the potential functions, 
then the so-called stochastic quantization method (Nelson, 1967), applied 
in the case when the force K is of the form (4), allows describing the 
diffusion process by a nonlinear equation of  Schr6dinger type. 

If, however, the mean starting velocity b is not treated as physically 
distinguished, then taking the force K of the form (4) in equation (3) cannot 
be taken as the basis of  the diffusion theory. Also, the assumption of the 
constancy of  the diffusion coefficients is too great a simplification if we 
want to consider the stationary nonequilibrium distribution of diffusing 
matter. In Part I (Trzesowski, 1989) it was shown that the case of nonconstant 
diffusion coefficients (in a locally homogeneous body) and locally equili- 
brium processes can be described as diffusion in the Riemannian space 
M = (R 3, G), defined by 

D(X) = DG(X) -1 

= D A B ( x  ) OA @C3B 

DAB(X) = D o A B ( x  ) (5) 

[G] = [12], [D] = I t - l ] ,  [ m ]  = [12t-1]  
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where D(X), X~ R 3, is the diffusion coefficient tensor; X = (X A) is the 
designation of an arbitrary coordinate system o n  R 3, as well as the designa- 
tion of coordinates of the standard point X ~ R 3 in the considered coordinate 
system; [A] denotes the absolute dimension of tensor A; and [/] = cm, 
[t] =sec in the cgs unit system. The covariant Levi-Civita derivative V 
corresponding to the metric tensor G fulfills the following localization 
condition for the diffusion process in the locally homogeneous body 
(Trz~sowski, 1989, Sections 1 and 4): 

VD(X) =0  (6) 

For Markovian diffusion processes with values in Riemannian space, 
the method proposed in Nelson (1967) of defining the mean acceleration 
a fails and attempts at its generalization (e.g., Dankel, 1971, Dohrn and 
Guerra, 1978) do not lead to satisfactory results. The Nelson relation (3) 
should be modified if we want to apply the stochastic quantization method 
to describe locally equilibrium diffusion processes. The first part of this 
modification has in fact been realized in Part,I (Trzesowski, 1989) and it 
consisted in the consideration of the arriving Markovian diffusion process 
in the place of the time-reversed Markovian diffusion process. Further 
modification can be made with the help of a method proposed in Collins 
(1977) of SchrSdinger equation derivation (generally nonlinear) from the 
continuity equation for the probability density function (Section 3). This 
is equivalent, with the appropriate definition of the force K, to generalization 
of the Nelson relation consisting in replacing the mean acceleration by the 
effective acceleration of the form 

a = atv+v �9 Vv+ V~D (7) 

where v is the diffusion peculiar velocity (Trzesowski, 1989) and ~o is the 
diffusion counterpart of the so-called Bohm potential, considered in the 
hydrodynamic formalism of quantum mechanics. If the diffusion coeffi- 
cients are constant, then the acceleration (7) equals the Nelsonian mean 
acceleration. In this paper the equations obtained in this way are applied 
to the description of the coupling of the diffusion process with the plastic 
yielding process caused by the motion of dislocations in the body (Sections 
4 and 5). 

2. MATERIAL SPACE OF BODY WITH DIFFUSION 

Let 93 be the three-dimensional, simply-connected, smooth and orient- 
able differentiable manifold and n: 93 ~ R 3 the smooth diffeomorphism onto 
a certain simply-connected open set 93, = n(93). In continuum mechanics 
such a differentiable manifold is called the body, and is considered the 
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geometrical model of a material body ignoring the influence of the boundary 
layer on its material properties. The deformation of the body, as well as 
some kinds of defects of its material structure, can be described by giving 
additional geometrical structure to it (Trzesowski, 1987). The existence of 
the global diffeomorphism x makes it possible to identify the body ~ with 
its image ~ at that mapping and then these additional geometrical struc- 
tures can be introduced on the set ~ .  

In Part I (Trzesowski, 1989) it was shown that if we ignore the influence 
of  the body boundary on the locally equilibrium diffusion process in a 
locally homogeneous body, then this process can be described as a 
Markovian diffusion process with values in the Riemannian manifold M = 
(R 3, G) discussed in the Introduction.  In this case the assumption that 
~ = R 3 is a model element for the diffusion process, whereas the metric 
tensor G describes "diffusive" properties of the material structure of the 
body. The manifold M will be called the material space of the (locally 
homogeneous) body with (unlimited) diffusion (Trzesowski, 1989, Section 
4). In Part I it was also shown that the diffusion peculiar velocity v and the 
diffusion velocity u are connected with the concentration p = p(X, t) of  the 
diffusing matter through the equations 

O t p + V a ( p v a ) = o  in M x I  (8) 

and [considering the localization condition (6)] 

U A = _ _ !  DAB(x)VBp 
P 

= G A B ( X ) U B  

U A = -2DOAR, R = l n ( p / p o )  1/2 

(9) 

where I c R+ is a time interval, V A is the Levi-Civita covariant derivative 
corresponding to the metric tensor G, P0 is an arbitrary homogeneous 
concentration, and where it was taken into account that p is a scalar 
(Trzesowski, 1989, Section 4). 

In the case of a diffusion process concentrated in the regular domain 
~ with the boundary 0 ~ ,  the material space of  the body with diffusion 
is a submanifold M [ ~  = ( ~ . ,  G) of  the manifold M, and equations (8) 
and (9) should be completed by the condition that the concentration p 
vanishes on the boundary ~ ~ (Trzesowski, 1989, Section 6). The cases 
when the diffusing matter can penetrate the body boundary or concentrate 
in its boundary layer are not considered in this paper. I will not discuss 
the boundary problems for the diffusion process in the set ~ either, and 
because of  that I will restrict the considerations to the manifold M. 
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3. GENERALIZED STOCHASTIC MECHANICS 

Let p: ff3~ x I--> R+, I c  R+ a certain time interval, be a differentiable 
concentration function. Because this function is nonnegative, it should fulfill 
the following condition (Collins, 1977): 

3 X o c ~  V t ~ I  p(Xo, t ) = O ~ V t ~ I  Otp(Xo, t)=O (10) 

Condition (10) is fulfilled by, e.g., the so-called Born representation: 

p(X, t)= po 0(x, t)0*(x, t)=pol0(x, t)l 2 (11) 

where 0: ~ x I--) C is a differentiable function with complex values, Po is 
an arbitrary constant with the dimension of p, and the asterisk denotes the 
(complex) conjugate operation. The Born representation is not the only 
representation o f p  ensuring fulfillment of the condition (10). For example, 
if the function 0 in the formula (11) takes quaternion values, then (10) is 
also fulfilled. This paper assumes, as is in the stochastic quantization method, 
the Born representation. 

Collins (1977) showed that in the case of Euclidean space, the nonlinear 
Schr/bdinger equation can be derived from the continuity equation (8) and 
from the representation (11). This result can be generalized for an arbitrary 
Riemannian manifold. To that purpose, it is convenient  to pass to the 
language of differential forms, the exterior derivative d, and the codifferential 
& If v is a tangent vector to M, representing, e.g., the velocity vector, then 
v will denote the covector canonically assigned to it, i.e., 

V -- I)AOA<....) 1) = G v  = VA d X  a 

1)A = GAB 1)B (12) 

[v] = [ t - 1 ] ~ [ v ]  = [12 t -1]  

We will also use the formulas (Choquet-Bruhat, 1977) 

dv = OA1) B d X  A A d X  n = V A1) B d X  a A d X  B 

I ( V  A1)B -- V BVA ) dX A ̂  dX 1~ 

div v = VA DA = G-1 /2OA(G1/21)A) ,  G = detll GAB [I 
(13) 

8f=O for f ~  C~ 

8v = -d iv  v 

~(f1))  =- -1)"  d f  +(~1) ) f ,  I). d f  = 1 )AOaf  
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and apply the Laplace-Beltrami operator A d=f--(Sd + d6 ) ,  which acts accord- 
ing to the rule (Choquet-Bruhat, 1977) 

A f =  - 8  d f =  GABVAVBf 
= G - I / 2 O A ( G 1 / 2 G A n o B f )  

(14) 
A~) = ( G A B V  A V B~)C -- RBCO B) d X  c 

R B c  = R A B c  = R c B  

where RAB is the Ricci tensor and R ~ B c  is the curvature tensor for the 
Levi-Civita derivative V (Schouten, 1954). 

In these "designations equation (8) takes the form 

3 tp  - 6 ( p v )  = 0 (15) 

and the diffusion velocity vector u [equation (9)] is represented by the 
diffusion velocity covector u of the form 

u = - 2 D  d R  (16) 

Denoting 

~O = e R+'s ([R] = [S] = [1]) (17) 

we obtain from (11) and (17) that 

Q = e R = ( p / p o )  '/2 (18) 

Let us define the 1-form (covector) K by the condition that 

d S  = ( 1 / 2 D ) v +  K (19) 

where v is the diffusion peculiar velocity covector [defined by the diffusion 
peculiar velocity vector v according to (12)] and S is the phase appearing 
in (17). The covector K is defined with exactness by the transformation 

K --> ~ = K + d x  (20) 

corresponding to the phase transformation S--> S = S + X .  From (16)-(19) 
it follows that 

u = - D K  lnJ~b[ 2 (21) 

( p / p o )  V = - D i ( r  - qJdq,*) - 2D[~[EK 

From (11), (13) and (21) it follows that equation (15) is equivalent to 
the following condition: 

V ~  F ( q J ) r  = F(~b)*~0 (22) 

where 

F (  qQ = i O, ~b - D ( 6 d t p -  iqJ6K + 2iK . d~p ) (23) 
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The condition (22) is fulfilled iff there exists a function f :  M x I ~ R (depen- 
dent perhaps on ~b, qJ* and/( ) ,  such that 

VqJ F ( ~ ) r 1 6 2  (24) 

Finally, we obtain that the function r should satisfy an equation of the form 

F(~b) =fO (25) 

Denoting 

VK ---- _DK2+f /(2= GAB/(AKB (26) 

we can write equation (25) in the following form: 

iO,t) = D ( 6  + iK)(d - i / ( ) r  V~qJ (27) 

or, equivalently, in the form 

i0 , r  = - D ( V  -iK)2~O+ V,~O (28) 

where K =/(AOA, /(A = GAB/(n, and the formulas (13) and (14) are used. 
Equation (27) can be written, with the help of (17)-(19), in the form 

of the following system of equations: 

O,R = D ( - 2 d R  . dS  + 3dS + 2/(. dR  - 6/() 
(29) 

OrS = D [ - 6 d g  + ( d R )  2 -  (dS)2+2/( �9 dS - 2 ]  _ VK 

Acting with the exterior derivative d operator on both sides of equations 
(29), using (16), (19) and the formulas 

Au = - d 3 u  

(1~2)dr 2= v" d v + ( v ,  d ) v  

(1 /2 )du  2 = (u .  d ) u  (30) 

[(/9" d)W]a = I . ) B ~ B W A ,  ('l)" dW)A = 1,)B~ A W B  

we obtain that the equation 

Gu = - d ( u .  v) - Dd6v (31) 

should be satisfied, where u.  v = GABUAVA, and as well as the equation 

a = - 2 D ( d V , ,  +Or~( - v .  d/() (32) 

where 

a = O t v + ( v .  d ) v - ( u ,  d ) u + D A u  

[a]=[12 t -2] 
(33) 
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From (16), (18) and (30) it follows that the covector a can be written in 
the following form: 

a = t~ + d~o D 
(34) 

f ~=O,v+(v"  d ) v  

where 6 is the so-called material time derivative (Marsden and Hughes, 
1978) and where 

~o o = - 2 D 2 (  A Q /  Q) 

= D2[ �89  2 - A p / p ]  
(35) 

The potential ~0D, called the diffusion potential ,  is the diffusive counterpart  
of  the so-called Bohm potential, considered in the hydrodynamic formalism 
of  quantum mechanics (Takabyasi,  1983). I f  M = ( R  3, G )  is a Euclidean 
space, then there exists a Cartesian coordinate system X = ( X  A) o n  R 3 such 
that GAs(X)*----GAs =cons t  and the vector a [see (12)] can be identified 
with the Nelsonian mean acceleration vector of  the Markovian diffusion 
process with constant diffusion coefficients DAB*= D G  An (Nelson, 1967). 
In the case of  Markovian diffusion process with values in the Riemannian 
manifold, one can modify the definition of the Nelsonian mean acceleration 
in such a way that the formula (33) also has such an additional interpretation 
(Dohrn and Guerra,  1978). 

Let us assume additionally that diffusing (identical) panicles have 
mass. Let us denote by h a constant with the dimension of action ([h] = 
g cm 2 sec -1 in the cgs unit system), defined by 

h = 2roD (36) 

where m is a diffusing particle mass (possibly of  effective mass character) 
and D is a characteristic constant [appearing in (5)] with the dimension of 
diffusion coefficient. Let E be a covector with the absolute dimension 
[E l  = [t -1] and q~ a scalar with the energy dimension ([~] = [rnl 2 t-2]) such 

that 

1 
~,x + E = - T  d~ (37) 

Denoting by F a covector with the absolute dimension of force ([F]-~ 
[ml2t-2])  defined by 

F = h ( E  + v. f~) 

1) = dK, ( v " I) ) A = V B I)  AB 
(38) 
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one can write equation (32) in the form of the covectorial equivalent of 
equation (3): 

m a =  g 
(39) 

K = F - d V  

where 

hVK = V+q~, [V]=[ml2t -2] (40) 

If  we assume that equations (37)-(39) describe the influence of a certain 
external field on the locally equilibrium diffusion process, and we take the 
potential V as known, then equation (39) can be treated as the generalization 
of the Nelson relation (3) in the case of a diffusion process in a Riemannian 
manifold. This generalization, though not connecting the covector a with 
any averaging procedure, does not change the basic physical sense of the 
Nelson relation. Namely, this relation is a kind of constraint imposed on 
the mean (arriving and starting) velocities of the Markovian diffusion 
process. So, the forces appearing in that relation do not have exactly the 
sense of the cause of the motion, but of the restriction of too broad (from 
the physical point of view) a class of trajectories admissible by the 
Markovian diffusion process model. With such an understanding of these 
forces, the covector a has the sense of the effective acceleration and the 
additional interpretation of this acceleration (e.g., as the Nelsonian mean 
in its primary or modified sense) is not indispensable. Equation (27) can 
be now derived (as in the stochastic quantization method) from equations 
(15)-(19) and (36)-(40) (Dankel, 1971; Nelson, 1967). 

The potential V appearing in equation (39) is generally dependent on 
the function ~O. In such a case the basic equation of the theory is equation 
(27) [or, equivalently, equation (28)] completed by the conditions (36) and 
(40) and by the external field equation (37). The problem is open of the 
way in which V should depend on qJ in the locally equilibrium diffusion 
processes. For example, if K = 0, then the potential V of the form 

V(q,; X, t )=  U(X, t)+(h/2~-)[lnl$12+i ln($*/$)3 (41) 

where ~---m/~ [see Introduction, the commentary after equation (4)], 
describes the force K of the form (4) with F ,x t=-V U (Trzesowski and 
Kotowski, 1985). 

The influence of the external field on the diffusion process defined by 
equations (37)-(39) is similar to the influence of the electromagnetic field 
on a particle with electric charge (Nelson, 1967). A field similar to the 
electromagnetic one can appear, e.g., in the case when the potential field 
of the diffusion peculiar velocity (Trzesowski, 1989, Section 3) is disturbed 
by a certain vortex field (Julia and Toulouse, 1979). Further on I will show 
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that the influence of the crystal plastic yielding on the diffusion process can 
be described by such a type of field. 

4. PLASTIC YIELDING IN BODY WITH DIFFUSION 

Let us consider the diffusive volume of a (locally homogeneous) body 
with diffusion, i.e., a volume element dV(X) in the material space M of 
that body: 

dV(X) = G ( X )  '/~ d 3 X  
(42) 

G ( X )  = detll GA.(X)]] ,  d 3 X  = d X  1 d X  2 d X  3 

interpreted as the volume of the physically infinitesimal neighborhood of 
the point X ~ M in the (local) equilibrium thermodynamic state (Trzesowski, 
1989, Sections 1 and 4). The diffusive line element l = I(X) 

I(X) = [GAB(X) d X  A dxB] 1/2 (43) 

can be interpreted as the (infinitesimal) characteristic length connected with 
the local thermodynamic equilibrium states in the neighborhood of the 
point X with the volume dV(X). Let us denote by lo a certain distinguished 
diffusion characteristic length [e.g., lo = l(Xo)], by A = A (X) the deformation 
of this characteristic length at the point X, 

h = I/lo (44) 

and by e its so-called natural (or true) strain: 

e = In h (45) 

or, equivalently, 

A = exp(e) (46) 

where e is the solution of the equation 

de = dl/1, l(Xo) = lo (47) 

It is known that the distortion of the crystal lattice by its defects 
manifests itself in the plastic strain of the body (Trzesowski, 1987, Part I). 
In particular, the increment of  the plastic strain is defined by the moving 
dislocations: the dislocations which do not move do not participate in the 
plastic strain increment. This is described by a kinematic relation of the 
form (Follansbee et al., 1985) 

Ae = ( b /  M )  pdVdAt (48) 

where Ae is the plastic strain increment in time At caused by the dislocations 
with the mean velocity modulus Vd ( [Vd]=[ l t -1 ] )  and Burgers vector 
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modulus b ([b] = [/]); pa is the scalar density of mobile dislocations, i.e., 
the length of all dislocation lines included in the volume unit which can 
move ("nonanchored") ,  and M is a dimensionless coefficient (the so-called 
Taylor coefficient). So, if we want to consider the influence of the dislocation 
motion on the deformation of the diffusion characteristic length/(X),  then 
we can assume that there exists a certain covector 

e(X, t) = ca(X, t) d g  A [e] = [1] (49) 

independent of this characteristic length and such that along an arbitrary 
curve y: I ~  M, y( to)=Xo,  equation (47) is fulfilled, in which 

de(t) = 3,*( de)( t) (50) 

= e (y( t ) ,  t ) (~(t))  = eA(y(t), t)~/A(t) dt 

Then the plastic deformation of the diffusion characteristic length has the 
form (44), (46), where 

e = e(~/; t) = e = e(~,(s), s)(~,(s))ds (51) 
t to 

where % = yl[to, t]. This is equivalent to the transport of the metric tensor 
G along that curve according to the formula 

G(~, ( t ) )  = ,~ (~,; t)2G(~,(to))  
(52) 

A(3/; t) 2= exp[2e(y;  t)] 

Hence, it follows that if we define the covariant derivative V', t s I, by the 
rule 

g'l(X)/l(X) = e ( X ,  t) 
(53) 

gt = d X A ~ t  A 

then V' defines the so-called Cartan-Weyl geometry according to 

tc GAB ( X )  = Kc ( X,  t) GAB ( X )  (54) 

where 

K(X, t )=  2e(X, t) (55) 

Let us consider the one-parameter Cartan-Weyl space family M[G,  K] = 
{(R 3, ~t), t E I} defined by (54) as the evolution in time of  Cartan-Weyl 
geometry of  the general material space of a crystal body with lattice defects 
(Trzesowski, 1987, Part II). Then, the following conclusion results from the 
definition of  the covector K: 
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Conclusion. Cartan-Weyl geometry describes the distortion of the lat- 
tice of a (locally homogeneous) crystalline solid with diffusion which is 
accompanied by the natural plastic strain of (infinitesimal) characteristic 
lengths of the local thermodynamic equilibrium states of that body. 

The connection P = (I~Ac) corresponding to the covariant derivative V (I 
omit the index t because this is a parameter only in the geometrical formulas) 
is of the form (Schouten, 1954) 

FA c = FAc(G, D) - G A E p B E C ( F  , G) (56) 

where a FBc(G, D) are the coefficients of the symmetric connection fulfilling 
the condition (54) (the so-called Weyl connection): 

FAc(G, D) = �89 G AE ( DcGEB + D B G E c  --  DEGBc ) 
(57) 

O A = 0 A - KA 

and PB~c(F, G) is the so-called contortion tensor: 

PBEC (F, G) = SBEC -- SECB + SCBE 
(58) 

SABC = G c E S E B ( p ) ,  S E B ( P )  = P~AB] 

The contortion tensor describes the distortion of the crystal lattice of crystal 
elements with the volume dV(X) [equation (42)] by dislocations with 
(tensor) density Ol A B  of the form (Trzesowski, 1987) 

AE S A c ( ~ ) e B C E  Ol 
BCE (59) 

e BCE = G - 1 / 2 8  BCE, E ~ I?,BC E 

where 8ABC is a permutation symbol. Here the description of the dislocation 
distribution has been related to the material space M of a body with 
diffusion. In the literature, the description of the dislocation distribution is 
usually related to a body with no lattice defects (e.g., Kr6ner, 1960; Bilby, 
1960). In Trzesowski (1987) this description was related to the material 
space of a body with dislocations. 

Let us denote by R~Bc(F) the curvature tensor of the connection (56) 
(Schouten, 1954) and introduce the tensor O by 

0 = Oco d X  c |  D 

OCD -~- RAB(CD)(F  , G) d X  a A d X  B (60) 

R A B C D ( F ,  G )  = GDER~Bc(r') 
Since (Schouten, 1954) 

RAB(CD) (F  , G) = - -[V[AKB] "~- S E B ( F )  KE ] G c o  (61) 
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then the tensor O is of the form 

O = - ~ |  (62a) 

12 = dK (62b) 

The 2-form 12 appearing in the formula (62) is called the curvature length. 
The tensor O defines the so-called geometrical interactions between point 
defects and dislocations (Trzesowski, 1987). The physical sense of the 
geometrical interactions has not yet been fully recognized. Usually, they 
are connected with the creation and annihilation of point defects in a body 
with dislocations (Trzesowski, 1987; Kroner, 1985). 

From (55) and (,32b) it follows that the curvature length f~ is defined by 
the infinitesimal plastic strain e. Observe that 12 is independent of the 
dislocation density tensor c~ AB, which is connected with the so-called transla- 
tional plasticity, appearing in the slip phenomenon (e.g., Hull and Bacon, 
1984; Panin et aL, 1985). This means that f~ .can be connected with the 
influence of the dislocations (and point defects) on other kinds of elementary 
acts of plasticity. Such an elementary act of plasticity is, e.g., the so-called 
rotational plasticity connected with the phenomenon of crystal fragmenta- 
tion in the pastic yielding process (Panin et aL, 1985). Though the diffusive 
motion of point defects and the local slips belong to mechanisms leading 
to the creation of plastic rotation, all these phenomena are elementary acts 
of plasticity on different structural levels (Panin et al., 1985). For example, 
in the case of point defects of 10 -18 cm size, the elementary act of plasticity 
connected with the diffusive mass transport is related to the volume 10 -21- 
10 -22 cm 3. In the case of translational ("strictly dislocational") plasticity, 
larger structural elements take part in the elementary act of plasticity. 
Because as an approximation the effective width of dislocation is 10 7 cm 
and the length of its displacing part is 10-6-10 -3 cm, the elementary act of 
plasticity is related here to the volume 10 -2~ 10 16 c m  3. In the case of crystal 
fragmentation, taking 10-5-10 -2 cm as the characteristic size of the fragment 
or the grain, the elementary act of plasticity occurs in a volume of approxi- 
mately 10-15-10 -6 cm 3. So, the crystal fragmentation should be treated as 
a separate act of rotational plasticity connected with the mesoscale of the 
deformation process (i.e., a scale intermediate between atomic and macro- 
scopic scales) (Panin et al., 1985). 

The crystal fragmentation is also connected with the existence of 
superficial distributions of dislocations which cause a change of relative 
orientation between neighboring parts of the crystal. Such a distortion of 
the crystal structure manifests itself in the crystal lattice bend, but is not 
accompanied (in the absence of external field) by a macroscopic stress field. 
It is accompanied by a macroscopic field of so-called couple-stresses 
(Krrner,  1960). As a result, a body with such a distribution of dislocations 
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behaves like a body with internal rotational degrees of freedom (Trzesowski, 
1987, Part II, Section 4). I f  the crystal plastic yielding is considered as a 
state intermediate between crystal and fluid (the so-called dislocation fluid), 
then the couple-stresses field causes disturbances in that fluid, and as a 
consequence its flow acquires a vortical character. The consequence of this 
is the formation of substructures in the crystal in the form of  crystal 
fragmentation as well as in the form of cellular dislocation structures (Panin 
et al., 1985). These substructures are in fact dissipative structures, and can 
preserve themselves for a long time after the stopping of the deformation 
process, because a long relaxation time is a specific property of dissipative 
structures in crystals (Panin et al., 1985). 

The above remarks suggest that if one restricts oneself to the description 
of the plastic strain increments d e ( t )  [equation (50)1 in the dislocation fluid 
approximation [i.e., in the approximation of  relation (48)], then [according 
to (55) and (62b)] the curvature length f~ should depend on the vortex field 
in that fluid. So, first of all, let us describe that fluid. Let us consider the 
case when dislocations constitute the system of  (closed) dislocation loops 
[such a situation can occur, e.g., in the case of crystal irradiation with fast 
neutrons (Bullough and Newman, 1970). The dislocation loops can be 
described in the following way. The interpretation of the tensor OL AB 

[equation (59)] as the dislocation density tensor is connected with the 
interpretation of the system ~r = (~.A) 2-forms of the form 

A ~" = S a c ( f  ") d X  B A d X  c 
(63) 

[S~B] = [/-1], [ d X  A] = Ell, [~.A] = E1 ] 

as the infinitesimal counterpart of the Burgers vector (Bilby, 1960). Such a 
Burgers vector is connected with the dislocation density by 

T a = OL AB dSB 

dSB = �89 eBCD dS  Co 
(64) 

dS  CD = d X  c ^ d X  D 

[oLAB] ~--- [ i - -1 ] ,  [ d S B  ] : [ d s B C ]  : [ / 2 ]  

where the 2-form dSB is interpreted as representing the surface element dS  

with the unit normal nB: 

dSB = dSnB (65) 

[dS] =[I~], [n~]=[1] 

which is cut by dislocation lines with the density a az~. If  an infinitesimal 
loop is identified with an infinitesimal bivector (Schouten, 1954), then the 
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considered dislocations will constitute a dislocation loop system if the 
Burgers vector ,r = (r  A) fulfills the condition 

T A = d A, "~ = A B d X  B 
(66) 

[a] = [q ,  [~B] = [1] 

which is equivalent to the assumption (Kosevitch, 1972) 

1 A 
S ~ c ( F )  = ~ (aBrc - ac~n)  (67) 

If the dislocations are sufficiently distant one from one another that 
phenomena connected with their cutting can be ignored and the loops are 
flat (they are in their slip planes), then their distribution can be approxi- 
mated, assuming that 

~B = b2paaaB 
(68) 

[ b ] = [ l ] ,  [pd]=[1-2]  

where b is the characteristic length of the Burgers vector and pe = pal(X, t) 

is the scalar density of dislocation [see the commentary after equation (48)] 
related to the diffusive volume (42) [see the commentary  after equation 
(59)]. From (66) and (68) it follows that 

A 
r A =  N A r, N = ds~ e 

(69) 

A = b 2 p d d X A ,  ~cl = l n ( b 2 p d )  

If  the covector N is interpreted as a certain class of pairs of parallel planes 
with equal distances (Schouten, 1954), then (69) means that the infinitesimal 
loops, as well as the infinitesimal Burgers vector ,r = (rA), "lie" in parallel 
planes defined by N. This means that each plane belonging to the family 
of planes defined by N can be considered as a (local) slip plane, i.e., a 
plane in which there lies a line as well as a Burgers vector of the moving 
dislocation. Also possible are different configurations of the dislocation 
loop, consistent with the condition (69). One such configuration is the 
so-called double cross slip (Hull and Bacon, 1984), for which the Burgers 
vector lies in the slip plane, but the dislocation loop is bent in such a way 
that one part lies on the slip plane and the other on the plane parallel to it. 

The scalar density of dislocations Pd introduced by (68) includes in 
general the mobile as well as the stationary (anchored) dislocations. The 
influence of the crystal lattice distortion via the stationary (anchored) 
dislocations on the diffusion process is taken into account in the proposed 
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theory only through the influence of this distortion on the diffusion 
coefficients. It corresponds to the approximation in which the influence of 
the lattice distortion via the dislocation fluid on the diffusion process is 
described with the assumption that Pd is the mobile dislocation density 
related to the diffusive volume of the body [dependent on the stationary 
dislocation distribution--see (5) and (42)]. In that approximation, one can 
generalize the relation (48), assuming that the dislocation fluid defines the 
plastic strain increments de(t) ,  according to the formula (50), in which the 
infinitesimal plastic strain e is of the following form: 

s = "l'dPdV d 
(70) 

Vd =GVd, [Vd]=[lat-1],  [r~] = [ t ]  

where ~'d is a certain characteristic time for the dislocation motion in a 
body withdiffusion (see Section 5) and Vd is the mobile dislocation velocity 
(i.e., the flow velocity of the dislocation fluid). From (55), (62b) and (70) 
it follows that 

= 2r~pd ( ~  + ~:d ) 
(71) 

f~d = dVd, s = N A Vd 

where the covector N is defined by (69) and f~d is interpreted as the density 
of vortices in the dislocation fluid, i.e. 

~'~d = tOa dSA 
(72) 

toC = ~dAB eABC, ~dAB ~- O[AVdB] 

The vector t~d = (to A) is here interpreted as a vortex vector (vortices in the 
cylinder tube with section dSA) .  The 2-form f~a describes then the contribu- 
tion of the rotational plasticity to the geometrical interactions. Since from 
(67)-(69) it follows that [cf. (61)] 

Kc 7C = K c S C B ( p )  d X  A A d X  B -= 2rd (bpa)2~d  (73) 

then the 2-form 2~d describes the contribution of the translational plasticity 
to the geometrical interactions; in general, this contribution is connected 
with the local slips in the crystal. If  in the plastic yielding process the effect 
of the translational plasticity dominates (i.e., f~d = 0), then the dislocation 
fluid flow becomes potential, and crystal plastic yielding is possible with 
the character of the laminar flow of that fluid (Panin et al., 1985). In this 
case, the local slips can develop into macroscopic slip in the crystal. If the 
geometrical interactions vanish, i.e., 

f~=O (74) 
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then the strain e is not the plastic strain, because from (74) the following 
representation is possible: 

K, = d~,, ?, ~ C ~ 1 7 6  
(75) 

K,(x) : K(x,  t) 

In this case, Cartan-Weyl geometry can be reduced to Cartan geometry 
because from (54) and (75) it follows that 

~ t c ( a , G A B  ) =0, at = e -c' (76) 

and the dislocation fluid is reduced to the disclination loop fluid, because 

Ea = -~)a (77) 

In the case when in the plastic yielding process the effect of the rotational 
plasticity dominates (i.e., when Eu = 0), the crystal lattice distortion can be 
described by Weyl geometry, defined by the symmetric connection of the 
form (57). 

If the dislocation loops do not change their sizes in time, then the 
equation of the dislocation fluid flow is reduced to the equation of its 
continuity (Kosevitch, 1978). Let us generalize that model of dynamics, 
assuming that the space in which the dislocation fluid flow takes place is 
the material space of a body with diffusion [see the commentary before 
equation (70)]. Then the equation of dislocation fluid flow takes the follow- 
ing form: 

O,pa - 6(pave) = 0 (78) 

Equation (78) can be written in the form [Trzesowski, 1989, equation (70)] 

1 
a t p  d "JI- O A (  pdl.)~ ) . . . .  ~/ " E 

za 
(79) 

T = dG1/2 

where (70) is taken into account and where y.  e = GAR'yAe B. From the form 
of equation (79) it follows that the considered model of mobile dislocation 
dynamics includes their creation (or annihilation) in the plastic yielding 
process. 

5. INFLUENCE OF PLASTIC YIELDING ON DIFFUSION 

Let us consider the locally equilibrium diffusion process of point defects 
possessing mass (e.g., interstitial atoms) in a (locally homogeneous) crystal- 
line solid in which there occurs plastic yielding. If the plastic yielding 
process is accompanied by crystal fragmentation, then such a process is 
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connected with elementary acts of plasticity on the mesoscale level (Section 
4). In Section 4 it was shown that the curvature length 12 [equation (62)] 
is a geometrical object which describes such a plastic yielding process. As 
a consequence, 12 can be treated as a geometrical object connected with 
the mesoscale of the considered material structure. Because the diffusion 
process is connected with the atomic scale of that structure, 12 can be treated 
as an external field in the presence of which the diffusion process occurs. 
Such a curvature length defines the infinitesimal plastic strain e [or, 
equivalently the covector K; see (55) and (62b)] with exactness by the gauge 
transformation (20). This, and the way in which K appears in equations 
(28) and (57), suggest the assumption that the covector K defined by (19) 
and representing a certain external field [see the commentary after equation 
(40)] is connected with the infinitesimal strain e by equation (55). Then 
from (19), (36) and (62b) it follows that the curvature length 12 is of the form 

12 = _ m  dv (80) 
h 

Let us observe that formula (80) is consistent with the hypothesis connecting 
the geometrical interactions [equation (62)] with the creation and annihila- 
tion of point defects [Trzesowski, 1989, equation (70)]. 

Acting with the codifferential operator 8 on both sides of equation 
(37), we obtain 

1 
O,SK + 8E  = ~  A~ (81) 

Let us write, using equations (55) and (70), the continuity equation (78) of 
the dislocation fluid in the form 

1 
O,pa = 8K (82) 

2"ra 

Multiplying both sides of equation (82) by the characteristic constant D 
and introducing designations 

= - - p ~  
m 

c ] =  D ,  [c~] = [t t-x], [~]  = [rn t 2 t -2] 
~'d 

where h is of the form (36), we can write equation (82) in the form 

1 

(83) 

(84) 
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If the scalar ~ in equation (81) is of the form (83), then equation (84), 
considered together with equation (81) and the gauge transformation (20), 
is the counterpart of the so-called Lorentz gauge condition for the elec- 
tromagnetic field. Here, however, unlike in the electromagnetic field theory, 
this condition is physically distinguished by the equivalence of equations 
(78) and (84). From (81), (83) and (84) we obtain the following wave 
equation with sources: 

1 02pa 
Apa c 2 0 t  2 = Xa (85a) 

m 
~a = - - 6 E  (85b) 

h 

Equation (85) shows that the constant Ca has the sense of the propagation 
velocity of a density wave in the dislocation fluid. This means that ca 
should be quantity of the order of the acoustic wave velocity in the crystal 
(Follansbee et al., 1985). 

Acting with the exterior derivative operator d on both sides of equation 
(37), we obtain 

Ot~ + d E  = 0 

d ~ = 0  (86) 

Let us consider the field (E, f~) as an external field in the presence of which 
the diffusion process occurs, and whose physical carrier is the dislocation 
fluid. This field acts on the diffusion atom according to equation (39), with 
the force F of the form (38). The influence of a field (E, ~) on a diffusing 
atom is similar to the influence of the electromagnetic field on a particle 
with electric charge. Equation (37) denotes that the pair (~, K) plays in this 
analogy the role of the electromagnetic field potential. The field (E, ~) is 
not fully determined, because of the lack of an equation defining E. For 
example, if we know from somewhere else the mechanical "Lorentzian" 
force F, then (38) becomes the constitutive equation defining the field E. 
Also, an additional condition, defining the form of the sources gd in equation 
(85), can be used for defining the field E. Leaving the problem of the 
formulation of equations defining the field of E open, we restrict ourselves 
to the discussion of the case in which the proposed theory has a closed 
character. 

In special conditions connected with the kind of crystal material, as 
well as the degree of advancement of the plastic yielding process, the 
contribution of the rotational plasticity to this process may become dominat- 
ing (Panin et al., 1985). Because the rotational plasticity does not cause 
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stresses in the body, but is only the cause of the appearing of the couple- 
stresses in it (Section 4), so one can expect that in this case the Lorentzian 
force should vanish: 

E + v .  f~=0 (87) 

Then E becomes a covector proportional to the current of vortices in the 
diffusing matter [see equation (80)], and equation (86) takes the following 
form: 

O,f~ - d ( v .  f~ = 0 
(88) 

df~=0  

The scalar x~ in equation (85) is here of the form 

m 
xa = - - ~ a ( v .  PZ) (89) 

and fZ is proportional to the density of vortices l)a in the dislocation fluid 
[cf. equation (71)]: 

f~ = 2raPaf~a 
(9O) 

~ a  = dva 

Equations (78), (80), (85a), (89) and (90) describe the dislocation fluid in 
a body with diffusion. Equations (11), (21), (27), (36), (40), (55), (70) and 
(83) describe diffusion in a body with (rotational) plastic yielding defined 
by this dislocation fluid. 

Finally, let us observe that from the analysis of the properties of the 
statistical entropy of the locally equilibrium diffusion process (Trzesowski, 
1989, Section 7), it follows that the thermodynamic openness of the system 
and the tendency to create the dissipative structures in it (see Section 4) 
will take place when the diffusion peculiar velocity v fulfills almost 
everywhere the condition 

-8v  = div v < 0 (91) 

6. CONCLUSIONS AND REMARKS 

Part I of this work (Trz~sowski, 1989) considered the locally equilibrium 
diffusion process in which there appear two mean velocities of the diffusing 
particle: the arrival velocity to the point and the starting velocity from the 
point. It was shown that the geometrization of the notion of local thermody- 
namic equilibrium leads to the description of that diffusion process as 
diffusion in a certain Riemannian manifold--the material space of a (locally 
homogeneous) body with diffusion (Section 2). 
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In the present part of this work it was shown that the results of the 
first part and (the modified) Nelson stochastic mechanics (Section 3), 
considered in the material space of a body with diffusion allow the descrip- 
tion of the coupling of the diffusion process with the plastic yielding process 
(Section 5). The proposed description of the coupling of these two processes 
is based on treating the geometrical interactions (Section 4) as an external 
field acting on the diffusion particles. These geometrical interactions were 
defined on the basis of identifying the Weyl relative change of the length 
scale with the increment of the plastic strain caused by the motion of the 
dislocations (Section 4). As a consequence, the geometrical interactions are 
connected with the increment of the plastic strain in an analogous way as 
in the Weyl theory the electromagnetic field is connected with the change 
of the scale, and the influence of the plastic yielding on the diffusing particle 
is similar to the influence of the electromagnetic field on particle with electric 
charge (Sections 3 and 5). 

The proposed theory also includes a "relativistic effect" consisting in 
the existence of a dislocation limit velocity (Section 5). An effect of this 
kind has frequently been discussed within the framework of different models 
of the motion of dislocations (e.g., Kosevitch, 1972; Seeger, 1981; Giinther, 
1981) as well as in the analysis of experimental data (e.g., Follansbee 
et al., 1985). Here, this effect is connected with the wave equation (85) for 
the dislocation fluid density. This wave equation is generally nonlinear 
because a source term appears in it coupling the motion of dislocations 
with the diffusive motion of point defects. Then, one can expect the existence 
of solutions of equation (85) describing soliton waves in the dislocation 
fluid (deWitt, 1985). 
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